
Figure 1: An illustration of the
Atlantic Meridional Overturning
Circulation. The surface currents
(orange) move warm water
northward while the deep ocean
currents (blue) move cold water
south.
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Abstract
Ocean salinity is a critical component to understanding cli-
mate change. Salinity concentrations and temperature drive
large ocean currents which in turn drive global weather pat-
terns. Melting ice caps lower salinity at the poles while river
deltas bring fresh water into the ocean worldwide. These
processes slow ocean currents, changing weather patterns
and producing extreme climate events which disproportion-
ally affect those living in poverty.

Analysis of salinity presents a unique visualization chal-
lenge. Important data are found in narrow data ranges,
varying with global location. Changing values of salinity
are important in understanding ocean currents, but are diffi-
cult to map to colors using traditional tools. Commonly used
colormaps may not provide sufficient detail for this data.
Current editing tools do not easily enable a scientist to ex-
plore the subtleties of salinity.

We present a workflow, enabled by an interactive colormap
tool that allows a scientist to interactively apply sophisti-
cated colormaps to scalar data. The intuitive and immediate
interaction of the scientist with the data is a critical contribu-
tion of this work.
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Figure 2: Screen capture of the ColorMoves tool, showing the
output section at the top, and the input section at the bottom.
Manipulating the colors on an interactive histogram of data values
in the input section changes the output rendering in real time,
providing a highly intuitive way to explore data values with
colormaps.

Background
As our understanding of the physical impacts of climate
change have grown, there is greater focus on the human
impacts associated with climate change. Human issues

can include food security, energy needs and production in
a warming world. People living in poverty can face greater
impacts from extreme weather events such as drought or
flooding. People living in near poverty can fall into poverty
as a result of such events. The developing world is much
more susceptible to these negative impacts.

In response to the issues of human impacts due to climate
change, the Department of Energy’s Office of Biological
and Environmental Research is funding and facilitating a
new initiative in climate modeling, the Accelerated Climate
Modeling for Energy project [6]. ACME brings together the
leadership computing resources of the national labs to build
state-of-the-science climate models covering all aspects
of earth system modeling necessary for century-long cli-
mate change predictions. The ocean component of ACME
is MPAS-Ocean, Model for Prediction Across Scales, devel-
oped at Los Alamos National Laboratory [13]. MPAS-Ocean
employs a variable-resolution mesh that allows multi resolu-
tion modeling of critical physical processes and the ability to
explore important geographical regions at high resolution.

Ocean currents, which transport heat and nutrients through-
out the global oceans, are a key component in understand-
ing climate change and its effects. Ocean currents are
driven by changes in both salinity concentration and tem-
perature. Decreases in salinity occur as the polar ice caps
melt and due to the influx of fresh water in river deltas through-
out the world. The Gulf Stream is part of a larger circulation
pattern called the Atlantic Meridional Overturning Circula-
tion, where warm waters move northward at the surface,
sink near the Arctic (Figure 1). Salinity, released during ice
formation, increases Arctic water density causing it to sink
and thus driving the AMOC. Arctic warming and increased
precipitation makes the waters of the North Atlantic warmer
and less salty, which will likely weaken the Gulf Stream and



impact global weather patterns. Based on the assessment
of models, observations, and our understanding of physi-
cal mechanisms, it is very likely that the Atlantic Meridional
Overturning Circulation will weaken over the 21st century
(where "very likely" is defined as a probability of 90% or
greater) [10].

Analysis of salinity presents a unique exploratory and visu-
alization challenge for the climate scientist as the interest-
ing data are found in narrow ranges of the data that vary
in different geographical regions. Changes in salinity are
important in understanding the behavior of the ocean due
to the linkage between changes in salinity associated with
climate change and changes in ocean currents.

(a)

(b)

Figure 3: Split operation - Clicking
the splitter button changes the
cursor, then clicking in the
histogram (top) splits the colormap,
as shown in (bottom).

Because of the narrow and geographically varying data
ranges, salinity is difficult to map to colors using traditional
tools. Default or commonly used colormaps may not have
the capacity to expose important detail in the data. Our
experience has shown that most data sets require a cus-
tomized colormap to optimize the perceptual reach into the
data. Domain conventions, scientific goals of the visual-
ization, statistical distribution and focal points must all be
considered in creating a colormap specific to the data. Ex-
tracting salinity detail from current editing tools normally
used by the climate scientist is difficult and time consum-
ing, hindering the scientist’s ability to explore the data. We
are constantly left wondering what important information
and scientific insights we are missing in the huge datasets
resulting from these large scale simulations.

Building on our previous work in nested colormaps and our
ongoing collaboration with the climate modeling team at
LANL, we present a workflow, enabled by a novel inter-
active colormap building tool that allows a scientist to in-
teractively apply sophisticated colormaps to scalar data.
The workflow puts sophisticated colormaps - created by

an artist to maximize the expression of detail in the data
- under the control of a scientist. This enables the scien-
tist to apply dense colormaps where detail is needed, and
muted color where data need not be emphasized. The in-
tuitive, interactive and immediate interplay of the scientist
with the data is a critical contribution of this work. The sci-
entist can explore data through color so quickly and intu-
itively that a whole new type of interaction with data results.
Through our ongoing collaboration with Dr. Mark Petersen
of the LANL COSIM team, we are able to focus on the spe-
cific exploratory aspects of data visualization needed by the
domain scientist that must be addressed during the devel-
opment of a colormapping tool.

Prior Work
Color is a critical component of a good visualization, par-
ticularly with data that is complex, or data with nuanced
ranges. Research shows that tasks and color usage are
closely intertwined [17], and that the proper use of color
is critical to optimizing analysis. It is also well understood
that rule-based systems that account for this dependency
between data and task can assist in the selection and appli-
cation of color scales [7] [20]. Naturally, then, researchers
have long studied color choice in visualization, with the re-
sult that rules for color use [7], ways of choosing optimal
color scales [12, 16] and the impact of color spaces [14, 23]
are widely understood. Principles of perception are a cen-
tral theme of this area of research [8], as is an understand-
ing of how attention is allocated [24]. Research has also
been done in algorithmically determining colormaps based
on specific characteristics of the data, as in [22].

Additionally, useful tools exist to help users create color
palettes appropriate for an array of visualization tasks, and
a good survey of current tools is found in [21]. These in-
clude ColorBrewer [11], the NASA color tool [2], and Gregor



Aisch’s chroma.js [1], a javascript library for working with
colors. These tools provide highly specialized color palette
design capabilities, but are not tied to a specific application.
[11] is highly integrated with a sample map visualization,
but the tool is used to design colormaps for a variety of ap-
plication domains. Importantly, visualization software used
by this community’s scientists, (for example, ParaView) nec-
essarily includes user interface components for designing
or importing colormaps. Relevant details of the tools avail-
able in ParaView are discussed in relation to ColorMoves
in the User Studies section. It is this type of combined col-
ormap/scientific data visualization tool that is most useful to
our collaborators, and which is the topic of this paper.

The Tool

(a)

(b)

Figure 4: Nest operation. Clicking
the nesting button changes the
cursor, then clicking in the
histogram (a) adds a nested
colormap, as shown in (b).

(a)

(b)

Figure 5: Moving pins. Pins can
be dragged by mouse, as in
draggin from position (a) to position
(b). Dragging the pin onto the trash
removes it. Removing a nested
colormap also removes any pins
within that colormap.

A colormap editing tool should be a lightweight, cross-
platform application that can be easily used across devices
by users familiar with standard image viewers. Towards that
end, we have developed ColorMoves, an application that
fulfills these requirements. ColorMoves is described in de-
tail in this section.

Tool Structure
Figure 2 shows a screen capture of ColorMoves. There
are three physically separate sections of the tool: (1) the
input section, (2) the output section, and (3) the colormap
picker section. The lower section of the interface is the input
section and is the workspace for colormap assembly. The
upper section of the interface is the output section; it shows
the visualization with the current colormap applied. The col-
ormap picker section acts as a toolbox for the input section,
and scrolls into view as needed by the user. Each section is
described in detail below.

Output Section
The output section looks and feels like a standard image
viewer. The visualization changes in real-time as the map is
adjusted in the input section. The image can be moved and
zoomed by dragging and scrolling with the mouse.

Input Section
The input section is an editable graph that shows the cur-
rent colormap along the horizontal axis. A histogram of val-
ues for the current image is integrated into the colormap.
Histogram resolution can be changed with a slider. Similar
to the image in the output section, the assembled colormap
and histogram can be magnified and scrolled through using
the mouse. This allows for easy fine tuning of narrow col-
ormap sections. The histogram is surrounded by controls
for colormap editing (see Workflow section), one of which
opens up the colormap picker.

Colormap Picker Section
The colormap picker works similarly to a traditional color
picker control. It contains colormaps horizontally grouped
into different linear and divergent colormaps, as well as a
range of solid colors. Colormaps are introduced into the
input section by dragging them with the left mouse button.
Optionally each colormap can also be flipped before use.
New colormaps can be imported by dropping colormap files
in XML format onto the colormap picker.

Individual Operations
To build a colormap, users have the ability to flip, split and
nest colorscales. Flipping a colormap is implemented us-
ing the flip button next to the corresponding colormap in the
colormap picker. Splitting and nesting are utilized by drag-
ging a splitter pin (I-shaped pin) or a nesting pin (U-shaped
pin) from the respective button onto the colormap in the in-
put section (Figures 3, 4, 5, & 7).



Tool Workflow
A typical workflow for creating a tailor-made colormap from
scratch with ColorMoves consists of the following. The user
starts with a default colormap over the whole data range.
To create a new map, a colorscale is dragged from the color
picker. A user can then insert a pin and drop in a second
colormap (Figure 6 top).

The user can change histogram resolution or zoom into the
histogram or image to help identify regions of interest in the
data. By dropping a nested colormap (U-shaped pin) and
choosing a contrasting color for it, a reference between a
part of the value range and the corresponding area of the
visualization can be established. The inverse problem of
identifying a value range corresponding to certain areas
(pixels) in the image is easily done by moving the bound-
aries of the nested colormap until it surrounds those pixels
(Figure 5). Once the value range for the area of interest has
been determined, the solid color of this nested section can
be replaced by a suitable colormap (Figures 6 middle and
bottom).

Figure 7: Buttons used to
control the ColorMoves tool.

Figure 8: Examples of
colormaps available in the
colormap selection area. There
are a wide selection of
colormaps arranged by color,
which can be dragged and
dropped into the histogram.

A suite of divergent colormaps is available or can be built by
combining two linear colorscales. When the user is satisfied
with the created colormap, it can be exported in XML format
using the save-colormap button (button with disk icon).

User Studies
The climate scientist’s workflow to render and view the sim-
ulation data takes place using the standard visualization
package, ParaView [3]. For many domain scientists, the pri-
mary tools available to improve the perceptual reach into
the data within ParaView include (1) changing the colormap
applied; (2) varying the data range to put most of the de-
tail in a narrow data range of interest. Additionally, while
ParaView does provide the capability for a user to change

Figure 6: A typical workflow in ColorMoves starting with a neutral
grayscale and adding a pin to drop in a linear blue colorscale for
the high data ranges (top), adding a pin to split the colormap and
insert a linear yellow/orange colormap (middle) and finally nesting
a linear green colormap (bottom).

and define control points along a colormap, it is not an easy
process. While this feature may be used by visualization



Figure 9: The user study example (left) and validation (right)
panels.

experts, the domain scientist commented that he seldom
takes the time necessary to create a colormap with that fea-
ture: perhaps "a few times a year" to create something for
a publication but not for everyday exploratory work into the
data.

A flexible tool for building colormaps must be able to achieve
similar or better perceptual depth into the data than that
available to the scientist through ParaView. It must also
provide the scientist with an intuitive, user-friendly inter-
face that allows the scientist to explore the data. To assess
these properties, we used a multi-faceted approach to user
studies. The perceptual properties of colormaps developed
through ColorMoves were tested through an online study
that compared "best-case" renderings of the data using
ParaView with colormaps developed through ColorMoves.
Ease of use questions were tested through a qualitative
in-person or Skype interview study that asked computer
scientists familiar with ParaView to create a colormap in
ParaView and repeat the process using ColorMoves. Lastly,
in a case study approach, two LANL climate scientists did
in-depth feedback interviews to assess the capability of Col-
orMoves for exploratory scientific tasks.

Perceptual Depth User Study
In order to compare the perceptual quality of ColorMoves
and ParaView colormaps, we created an online study that

compared two colormaps created in ParaView with two col-
ormaps created in ColorMoves. The hypothesis of the study
was that the colormaps derived from ColorMoves would be
at least as perceptually detailed as colormaps derived from
ParaView.

In ParaView, we chose two colormaps: the standard cool/warm
divergent and a new blue/orange divergent. Stemming from
our team’s previous work [19], this blue/orange divergent
is one of a range of colorscales recently accepted into Par-
aView [18, 3]. The Mediterranean Sea is an interesting area
to the climate scientists as the Nile river and other fresh wa-
ter sources empty into it causing rapid changes over a nar-
row range of salinity. In ParaView, the Mediterranean was
rendered using a range of sanity from 35.0 to 39.0. This
data range optimized the perceptual detail available over
the narrow data range of interest in this area. These repre-
sented the "best-case" ParaView colormaps. Using Color-
moves, the authors converged on two best-case colormaps,
one a mix of blue/green, another a mix of blue/orange.
These colormaps were exported from ColorMoves and im-
ported into ParaView to create the study images. In addition
to the above four images, a validation image was created
using the standard cool/warm colorscale in ParaView over
the full salinity data range, 5.79 to 40.43. An example im-
age was also created, identifying the Mediterranean so par-
ticipants could orient themselves. The four study images
are shown in Figure 10 while the example and validation
panel are shown in Figure 9. The study images are listed in
Table 1 along with a naming convention for future reference
(PV=ParaView; CM=ColorMoves).

The online study was coded in Qualtrics, an online survey
site [5]. After consent and colorblind exclusion questions,
the survey began by showing the example image of the
Mediterranean. A brief passage helped participants orient



Figure 10: The user study images; top row: PVCW (left) and
PVBO (right); bottom row: CMBG (left) and CMBO (right)

Table 1: List of images used for user study along with their
attributes.

Name Visualization Tool Colorscale Range
PVVal ParaView Cool/Warm 5.79-40.43
PVCW ParaView Cool/Warm 35.00-39.00
PVBO ParaView Blue/Orange 35.00-39.00
CMBG ColorMoves BlueGreen 5.79-40.43
CMBO ColorMoves BlueOrange 5.79-40.43

themselves geographically and explained the study task: to
compare two images in different color schemes and choose
the image showing the most detail in salinity.

For the study, PVMCW, PVBO, CMBO and CMBG were
each pairwise compared. The comparison questions were
randomly presented and within each comparison, ran-
domly presented as A versus B or B versus A. As a vali-
dation question, participants were asked to compare PVCW
with PVVal. Basic demographic information was collected.
A total of 85 participants were recruited via Amazon Me-
chanical Turk, an online crowdsourcing site commonly
used by behavioral science researchers [4, 9, 15]. Only
two participants failed the validation question. The com-
parison results of the study are summarized in Table 2.
As can be seen, comparing the ParaView colormaps, par-
ticipants found that the ParaView blue/orange had more
perceptual depth than the standard ParaView cool/warm
(p<0.000001). Likewise, participants found the ColorMoves
colormaps, both in blue/green and blue/orange, to pro-
vide more perceptual detail than the standard ParaView
cool/warm (p<0.000001). The ColorMoves blue/green was
comparable to the ParaView blue/orange (p=0.094) while
the ColorMoves blue/orange was an improvement over the
ParaView blue/orange (p<0.01).

Table 2: Results of online user study.

Colormap A Colormap B NA NB p-value
PVBO PVCW 79 4 p<0.000001
CMBG PVCW 73 10 p<0.000001
PVBO CMBG 47 36 p=0.094
CMBO PVCW 76 7 p<0.000001
CMBO PVBO 52 30 p<0.01
CMBO CMBG 49 34 p<0.05

In-Person Qualitative Feedback on Usability
Four computer scientists/engineers were recruited for a
qualitative study to assess the usability and learning curve
of the ColorMoves Tool. Each participant was asked to rank



their ParaView expertise on a scale from one (least famil-
iar) to seven (most familiar). Participants included two Ph.D.
participants rating their expertise at a level of seven, a CS
graduate student with an expertise rating of 3 and an ex-
pert in visualization design, illustration and scientific ani-
mation (B.S.) with an expertise rating of 2 for ParaView. All
were familiar with the basic ParaView colormap editor func-
tions and the ability to change color control points in the
ParaView colormap editor. The interviewer used the tem-
perature variable in the North Atlantic to demonstrate the
concept of perceptual depth. Participants were then asked
to input a specific set of input files for ParaView which ren-
dered the salinity variable in a neutral colormap over its full
range for the full globe (flat projection). Participants were
given a maximum of 20 minutes to create an effective col-
ormap where "effective" was defined as showing the most
perceptual depth and detail in the salinity variable in the
Mediterranean Sea. Participants variously changed the
data range and colormap. All four participants manipulated
the control points in an attempt to add additional perceptual
depth. Most participants expressed some level of frustra-
tion at how difficult it is to place color exactly where needed
through the standard ParaView colormap. Participants took
anywhere from 7 minutes to 20 minutes to achieve a col-
ormap in ParaView that they felt sufficiently showed detail in
the Mediterranean.

Figure 11: In the above
colormap, the scientist opened
up a very narrow range in the
data (in dusty blue) to highlight a
specific contour in salinity
concentration.

Figure 12: In the above
colormap, the scientist exposed
maximum detail in salinity by
using the histogram to define
local minima and maxima points.

After exploring the data in ParaView, the interviewer demon-
strated the use of ColorMoves and its features, again us-
ing temperature data in the North Atlantic. The version of
ColorMoves used was locked prior to the beginning of the
study and included all of the above described features. Par-
ticipants were given a data file showing the full range of
salinity in the Mediterranean and asked to use ColorMoves
to produce a colormap designed to show detail. Varying in
time from 5 minutes to 13 minutes, participants were quickly

able to come up the learning curve and produce what they
considered an effective colormap for the described task us-
ing ColorMoves.

Participants were also asked for subjective feedback. A
comment repeated by each subject was the intuitive nature
of the tool: "super-intuitive". Participants also commented
positively on ease of interactively exploring the data: "I was
able to hone in on data of interest very quickly and immedi-
ately started making good decisions based on the data."; "It
changed how I was thinking about the problem because of
all the tools that I had."; and "Fascinating to see the break
points in the data and how a change in colormap captured
those details."

Participant suggestions for improvements included: mod-
ifying the histogram range to include the actual data val-
ues; adding additional colorscales; and adding the ability to
change the endpoints of the colormaps. Several subjects
missed the ability in ParaView to change the control points
within a colorscale. Overall, all participants agreed that they
were able to quickly create an effective colormap for the
task.

Domain Scientist Feedback
A final interview was conducted with Mark Petersen and
with another LANL scientist, Dr. Phillip Wolfram, who was
not involved at any stage of the development process of
ColorMoves. Given the salinity data in ColorMoves, both
scientists spent time determining the ways in which he
could explore the data with the new tool. Both scientists
appreciated the intuitive nature of the tool: "It is incredible
how extremely intuitive [the tool] is."

Each scientist chose a different exploratory task. Petersen
focused on identifying individual narrow ranges in the data,
exposing contours of salinity, while Wolfram delved into the



data, tying to expose as much detail possible. The ease
with which he could explore the data and, using the his-
togram, highlight and follow a contour in ColorMoves was
critical to Petersen: The tool allows you to explore on the fly
with a great deal of precision since you can zoom in on the
histogram. It is easy to follow a contour of interest in real
time. Figure 11 is example of how the scientist placed and
moved the pins to open up a small range and highlight a
specific contour in salinity. By placing pins at the local min-
ima and maxima of the histogram and applying the same
colorscale in alternating (flipped) directions, Wolfram was
able to maximize the perceptual depth into the data. His re-
sult is shown in Figure 12 and his impression is summed
up in: "I have never been exposed to a tool this capable be-
fore.". Both agreed that trying to achieve the same results
using the ParaView colormapping tools would not have
been possible on a practical level.

As for additional features, both agreed that the ability to
crop the colorscales to decrease the amount of white space
would be a useful feature. An extended palette of linear
colorscales and in-depth statistical analyses would also be
very useful.

Conclusions and Future Work
Our experience has shown that more detail can be gleaned
from data if colormaps are customized to the data distribu-
tion and to the goals of the scientist. Work to implement the
suggestions from the qualitative study and from the domain
scientists is underway. A cropping tool, in-depth statisti-
cal analysis of the data and additional colorscales are all
features to be implemented. The next phase is to extend
beyond climate science to other big data domains. Another
major pathway is to move into discrete color combinations
as a means of representing categorical data, resulting in

the ability to address both categorical and scalar data rep-
resentation within a single interactive interface.
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